

トンネル覆工修繕工事に おける建築限界確保

仙建工業株式会社 発表

〇民部田 敬志

志子田 洋一

発表プログラム

01. 工事概要

02. 施工条件

03. 施工数量

04. 現況写真

05. 漏水対策工の選定

06. 課題

07. 課題に対する検討

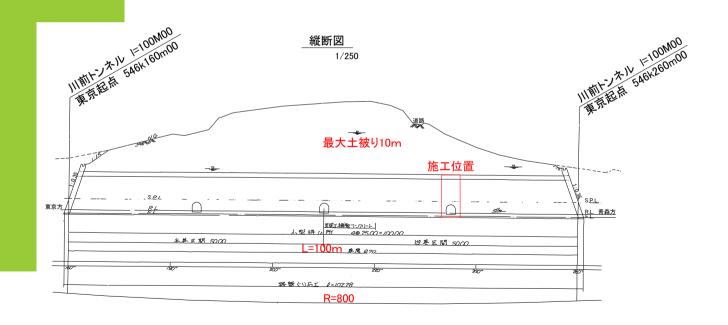
08. まとめと今後の課題

01.工事概要

本工事は、鉄道在来線トンネル(複線・電化区間、全長L=100m、R=800)のコンクリート覆工からの漏水を修繕するものである。

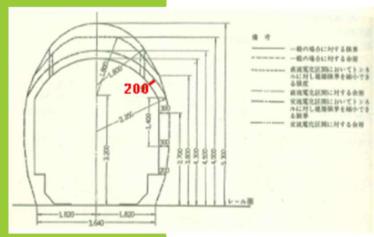
o2.施工条件

特徴


- トンネルの最大土被り10m程度、地山の地下水の影響を受けやすい。
- 寒冷地(東北地方北部)に位置
- トンネル延長が100mと短い。
- ・冬期、山からの厳しい吹きおろしによってトンネル覆工面からの浸透水 凍結が発生。

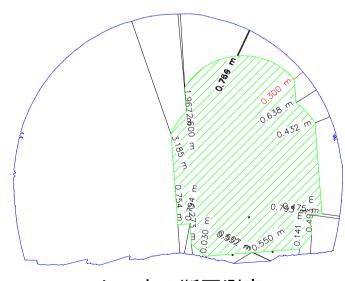
o3.施工数量

- **>>>**
- 漏水防止工A (A=99.8m2) 、漏水防止工B (A=27.0m2)
- 施工延長15m、R=800の曲線部施工、カントC=82mm


o3.施工数量

>>>>

トンネルにおける建築限界外余裕


トンネル建築限界管理マニュアルより、200mm+C/2=200+82/2=241mm

トンネル断面測定結果は300mm

トンネルにおける建築限界外余裕(mm)

東日本旅客鉄道㈱:トンネル建築限界管理マニュアル

トンネル断面測定

o4.現況写真(施工前)

施工前

工法選定要因 漏水状態 漏水量 内空断面の余裕

線状•面状

少量•多量

有り・無し

※その他、トンネルの構造、施工性、 土被り等周辺環境の条件を考慮

工法選	漏水状態 1)		線状			面状					
定要	漏 水 量2)		少量		多量		少量		多量		記事
因 I	1	医断面の余裕 3)	有り	無し	有り	無し	有り	無し	有り	無し	
導水工法		導水樋	0		0		Δ		Δ		・ 漏水が覆工の打維目のように直接上の場合に適する.
	線状	溝切り		0		0		0		0	 アーチ部に施工する場合は跡埋め材がはく離しないような注意が必要。 面状の対策工法の前処理としても行う。
	面状	防水板							0		
		防水シート					0		0		 内巻,改築等を行う場合に適用する。
止水工法	止水充填		Δ	Δ							・ 漏水の程度が軽微な場合に適用する.
	止水注入		Δ	Δ							・ 漏水の程度が軽微な場合に適用 する.
水位低下工法				0	0			0	0	・ 過大な水圧が作用したり、地下水 位が高く、湧水や列車走行による 繰り返し荷重により地山材料が排 出され、トンネル構造に問題が生 ずる場合等に適用する.	
	背面	前注入工法			0	0			0	0	 土被りが小さく,地表水や雨水が トンネル背面の空洞を流路として,直接トンネル内に流入する場合等に適用する。

公益社団法人 鉄道総合技術研究所:トンネル補修・補強マニュアル

• 工法選定結果

今回の施工区間はクラウン部で漏水が面状かつ多量に発生 内空断面余裕が無く、結氷が発生した場合でも建築限界に余裕のある スプリングラインより下部に導水することが必要条件

「防水板」を選定

• 防水板の種類

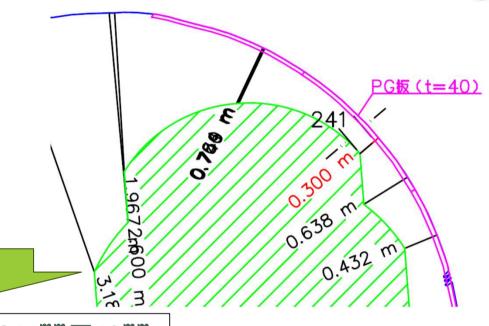
曲げ加工して防錆処理を施したライナープレート等の波板 繊維強化プラスチック板(FRP板) プラスチック板(塩化ビニール板) 等

漏水箇所は、凍結によるつららの発生により破損が懸念

トンネル凍害防止板「PG板」を採用

• PG板の特徴

トンネルの漏水防止とつらら防止を用途とする防水断熱板 通水層、断熱層、防火層の三層構造、寒冷地のトンネル向け 施工はアンカーボルトを使用して覆工に取付



PG板の厚さは40mm

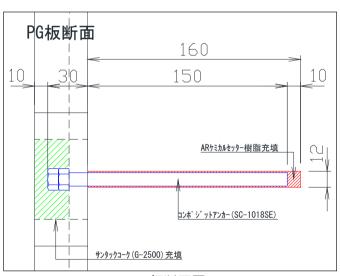
現在の側方余裕300mmに施工すると

300mm-4omm=26omm

確保すべき側方余裕との差 260mm-241mm=19mm

アンカーボルト突出長やナット形状を考慮すると、 建築限界外余裕寸法を支障してしまう

アンカーボルトの選定と短時間施工であるため付着不良による脱落防止検討必要

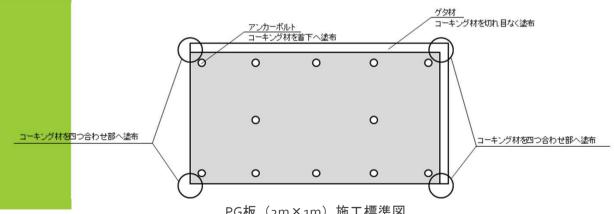


07.課題に対する検討

建築限界確保

- ・アンカーボルトは定着長150mm、突出長30mmのものとし、 トンネル肩部の建築限界外余裕のない箇所では アンカーボルト頭部がPG板から突出しない計画
- アンカーボルトの設置
 PG板を切り欠き頭部を埋込む形式とする。
 最小の建築限界外離隔は26omm(300mm-40mm=260mm)
 となり、本区間の建築限界外余裕寸法241mmを確保。

PG板断面図



o7.課題解決に向けた取組み

付着不良による脱落防止

・コンポジットアンカーの配置はPG板メーカーの推奨している配置 (6本/m²) に加え、アンカー削孔時に脆弱が確認された箇所は周辺に アンカー増し打ちを行った。

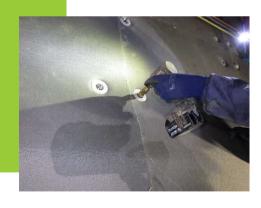
PG板 (2m×1m) 施工標準図

o7.課題解決に向けた取組み

付着不良による脱落防止

- ・気温10℃の作業環境下において、可使時間35分、硬化時間1.5時間 実作業時間約100分のため、作業終了時には硬化完了するよう施工手順を検討
- **▶短時間施工でもエポキシ**樹脂が硬化完了するよう当日の施工分を全数先行注入

EA-500)	温度	-5°C	0°C	5°C	10°C	20°(30°C	40°C
A-500S)	可使時間	5時間	2時間] 時間	35分	105	3分	1.5分
	硬化時間	8時間	4時間	3時間	1.5時間	305	25分	
A-500W)	温度	-15°C	-10°C	-5°0	2	0°C	5°C	10°C
	可使時間	2時間	1時間	30分	}	15分	10分	5分
4	硬化時間	6時間	3時間	2時間	3	1時間	30分	20分


o7.課題解決に向けた取組み

付着不良による脱落防止

打込み後にもエポキシ樹脂を再注入してPG板を取付け、目地に コーキングを行うことで部分的な脱落を防止した。

アンカーボルト頭部埋込箇所については、漏水の可能性が高くなるため

コーキングにより隙間の充填を行い、覆工面との密着性を高めた。

ナット締付状況

切欠部コーキング充填

o8.まとめと今後の課題

・まとめ

建築限界支障を発生させる可能性がある 要因を想定し、施工方法の工夫により リスクを排除できた

建築限界確保に繋げ、列車の安全安定輸送を確保

o8.まとめと今後の課題

>>>>

- 今後の課題

建築限界がコンクリート覆エトンネル断面よりも厳しい レンガトンネルの断面に追従可能で、長期対応可能な材料の選定 **プライフサイクル**コストを最小限に抑える

ご清聴ありがとうございました。